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Abstract.  This study presents an evaluation and comparison of visible,
near-infrared, passive and active microwave observations for vegetation characterization,
on a global basis. for a year, with spatial resolution compatible with climatological
studies (0.25°x0.253°). Visible and' near-infrared observations along with the NDVI
come from AVHRR. An atlas of monthly-mean microwave land surface emissivities
between 19 and 85 GHz has been calculated from SSM/I observations for a year,
suppressing the atn.oc *heric contamination problems encountered with the use of simple
channel combinations. The active microwave measurements are provided by the ERS-1
scatterometer backscattering coefficients at 5.25 GHz. The capacity to discriminate
between vegetation types and to detect the vegetation phenology is assessed in the
context of a vegetation classification obtained from in situ observations. A clustering
technique derived from the Kohonen topological maps is used to merge the three data
sets and interpret their relative variations with surface characteristics.

NDVT varies with vegetation density, but saturates for arid grassland and for
forested areas. Spurious seasonal cycles and large spatial variability in several areas
suggest that atmospheric contamination (cloud, water vapor, ozone, and aerosols)
and/or solar zenith angle drift still modulate the NDVI signal. Passive and active
microwave observations are primary sensitive to overall vegetation structure: They
respond to absorption, emission and scattering by vegetation elements, including woody
parts. Backscattering coefficients from ERS-1, measured with an accuracy of 5%,
are not sensitivé-to atmospheric variations and exhibit good potential for vegetation
discrimination with ~10 dB dynamic from rain forest to arid grassland. Passive
microwave measurements also show some ability to characterize vegetation, but are less
sensitive than active measurements. However, passive observations show sensitivity
to the underlying surface wetness that enables detection of wetlands even in densely
vegetated areas.

This study illustrates overall features of vegetation cover characterized by the



suite of data. Merging the data sets using clustering techniques capitalize on the
complementary strengths of the instruments for vegetation discrimination and shows

promising potential for land cover characterization on a global basis.



1. Introduction

Land cover physical characteristics are crucial boundary conditions for climate
models that influence the exchanges of energy, water, and carbon between the biosphere
and the atmosphere. Land surface parameterization for GCMs relies on global fields of
terrestrial biophysical parameters estimated from land cover characterizations derived
from in situ surveys [Matthews, 1983] or from vegetation indices calculated from satellite
data in the visible and near-infra. :d {Sellers et al., 1994; 1996]. The Normalized
Difference Vegetation Index (NDVI) calculated from the red and near-infrared channels
of the Advanced Very High Resolution Radiometer (AVHRR) has been extensively used
for vegetation studies. The availability of the NDVI data for two decades and its high
horizontal spatial résolution (up to 1 km) have motivated a large number of studies from
regional to global scales [e. g. Tucker, 1985; Myneni et al., 1998; DeFries et al., 1999},
relating NDVTI to vegetation biophysical properties. However, there are growing concerns
about the ability of the NDVI to quantitatively represent the vegetation properties and
NDVT sensitivity to atmospheric factors and instrument calibration is debated [Gutman,
1999).

Lower resolution space-borne sensors operating in the microwave part of the
spectrum have also shown some ability to characterize the land surface at spatial
resolutions compatible with climatological applications. For global vegetation
characterization, these instruments have, to date, triggered less interest than their
visible and near-infrared counterparts.

Passive microwave observations from the Scanning Multichannel Microwave
Radiometer (SMMR) on board NIMBUS 7 starting in 1978 and from the Special Sensor
Microwave/Imager (SSM/I) on board DMSP satellites since 1987 have been used in
vegetation studies, especially in conjunction with NDVI responses. Most studies have
focused on the use of simple indices like the microwave vegetation index (MVI) which

is based on the polarization difference at 37 GHz [e. g., Choudhury and Tucker, 1987;



Justice €t al.. 1989]. However, as noted by several authors [Tucker, 1989; KNerr and
Njoku, 1993}, atmospheric effects, especially cloud cover, is responsible for a large part
of the 37 GHz polarization difference, casting doubt on the interpretation of simple
indices solely in terms of surface properties. Recently, Prigent et al. [1997, 1998]
calculated land surface microwave emissivities from SSM/I observations by removing
contributions from the atmesphere, clouds and rain using ancillary satellite data. The
results show promising correspondences between geographical and seasonal patterns of
the emissivities and global land surface characteristics.

Multi-year active microwave data over the entire globe are a new resource available
since July 1991 wit) the launch of the European Remote Sensing satellite ERS-1
carrying a wind scasterometer operating at 5.25 GHz (C-band). Scatterometers
provide measuremei ts of the backscattering coefficient of the observed surface.
Primarily designed for estimating wind speed and direction over the ocean, space-borne
scatterometers have also shown good correlation with vegetation dynamics at global
and regional scales. Preliminary results were obtained with 3 months worth of data
from the scatterometer on board Seasat-A in 1978 [Kennett and Li, 1989] and were
later confirmed by several authors 1sing ERS-1 and 2 data [Kerr and Magnani, 1993:
Wisman et al., 1993; Frison and Mougin, 1996 a, b].

The objective of this study is to compare the ability of these different measurements
to characterize the spatial distribution of the vegetation and its phenology and to
examine how complementary strengths of the instruments can be used to obtain
maximum information about vegetatioﬁ physical characteristics on a global basis. The
three types of observations analyzed here cover a large portion of the electromagnetic
spectrum: 1) AVHRR visible (0.58 — 0.68um) and near-infrared (0.73 — 1.1um)
reflectances and the derived NDVI, 2) passive microwave SSM/I emissivities between
19 and 85 GHz (i. e. from 1.58 cm to 0.35 cm in wavelength), and 3) ERS-1 active

instrument backscattering coefficient at 5.25 GHz (wavelength = 5.71 cm). Actually



our analysis of SSM/I also uses observations in the visible and infrared (~ 11um) to
identify cloud-free scenes and measure surface skin temperatures, but in this study we
do not consider the possible information about the land surface properties that may be
obtained from temperature data.

A year of monthly-mean observations of each instrument is examined, at a spatial
resolution of 0.25° x 0.25°. This spatial resolution was chosen to be appropriate for
global climate studies. The three data sets are lescribed in section 2. Section 3 briefly
reviews the responses of each wavelength range to the land surface characteristics,
as background in interpreting the monthly-mean distribution of the data sets. The
ability of each instrument to discriminate among vegetation types and to capture the
seasonal cycle is analyzed on a global basis (Section 4). The classification of vegetation
by Matthews [1983] is used as a reference. A clustering technique stemming from
Rohonen topological maps is implemented to merge the three data sets and to enable a
synthetic analysis of the respective variations of the spectral bands (section 5). Section
6 concludes this study and suggests potential applications of the clustering technique

for land cover classification.

2. The data sets

This study evaluates globally and routinely available satellite data for their potential
for vegetation characterization with a spatial resolution compatible with climatological
studies. A full annial cycle from July 1992 to June 1993 is analyzed. The three satellite
data sets are mapped on an equal area grid of 0.25°x0.25° resolution at the equator and
monthly-mean values are calculated from daily values.

High resolution data from visible and near-infrared (Landsat, Spot) or from
synthetic aperture radar (SAR) have been investigated for local scale studies. However,
because of the large volume of data associated with those high resolution observations

and because of their incomplete coverage on a global and continuous basis. lower



resolution instruments are preferred for global scale studies.

The three satellite products are described in this section along with the Matthews’
vegetation data set. This vegetation classification has been widely used and provides a
test of the ability of the remote sensing instruments to distinguish among vegetation

types.

2.1. Visible and near-infrared reflectances and NDVI from AVHRR

The AVHRR instruments on board the NOA A meteorological polar orbiters provide
daily observations of the Earth with a spatial resolution of up to 1 km. The first
AVHRR channel is in the visible VIS 0.58-0.68 um) where chlorophyll causes absorption
of incoming radiation and the se.ond channel is in the near-infrared (NIR 0.73-1.1 um).
NDVI is calculated as the ratio of the difference of the AVHRR channels 2 and 1 over
their sum.

Several AVHRR global data sets have been produced. Monthly AVHRR products
at 8 km resolution are generated under the joint NASA and NOAA Earth Observing
System Pathfinder project [James and Aalluri, 1994]. They are available at NASA
GSFC Distributed Active Archived Center (WEB site http://gsfc.nasa.gov), along
with a description of the data calibration and processing. Correction for Rayleigh
scattering is performed, but there is no atmospheric correction for clouds, water vapor,
aerosols. and ozone. However, NDVI composite maps correspond to the maximum value
of the NDVI for the compositing time period, which tends to minimize atmospheric
contamination [Holben, 1986]. Solar zenith angle dependences are related to both
annual solar cycle and changes in the equator crossing time. They are not accounted
for in the reflectances and can introduce a spurious seasonal variation in the NDVI
signal that may be falsely attributed to vegetation changes [Gutman, 1999]. Gutman
[1999] describes the data set in detail and analyzes its quality. He reviews instrument

performance and satellite orbit characteristics. For NOAA 11. which covers the period



of this study, the anomalies in the channel 1 and 2 reflectances should be no more than
1% and £2%, respectively [Gutman, 1999]. Using a simple error propagation equation,
these errors translate into an accuracy of ~ 0.1 in the NDVI for typical values of the
VIS and NIR reflectances. Several problems are mentioned (inter-sensor calibration,
sensor degradation, satellite drift and changes in the solar zenith angle, contamination
by clouds, water vapor, aerosols, and ozone) that hamper the interpretation of NDVI
as vegetation only. From radiative transfer calculations, Tw..re et al. (1992] carefully
quantify the effect of atmospheric constituents in the VIS and NIR reflectances. Water
vapor absorption essentially affects the NIR reflectances and depresses it by 10-30
% in sparsely vegetated areas. That translates into a decrease of up to 0.1 in the
NDVI. Ozone can reduce the reflectance in channel 1 by 5-15% of its value. Aerosols
can completely masks the vegetation properties with changes up to 0.2 in the NDVI
in densely vegetated areas. Gutman [1999] draws attention to the NDVI problems
and stresses that NDVT investigations, especially those directed at long-term trends,
encounter serious challenges.

In this study, the VIS and NIR reflectances and the NDVI monthly-mean products
are investigated. Data are averaged from their 8 km Pathfinder nominal resolution to

an equal area grid of 0.25° x 0.25° at the equator.

2.2. Microwave emissivities between 19 and 85 GHz (SSM/I)

The SSM/I instruments on board ‘the DMSP polar orbiters observed the Farth
twice-daily at 19.35, 22.235, 37.0 and 85.5 GHz with both vertical and horizontal
polarizations, with the exception of 22 GHz which is vertical polarization only [Hollinger
et al., 1987]. The observing incident angle on the Earth is close to 53°, and the elliptical
fields of view decrease in size proportionally with frequency, from 43x69 to 13x15
km?. Hollinger et al. [1990] provide an evaluation of the instruments and inter-sensor

calibration was examined by Colton and Poe [1999]. Pioneer investigations of the



sensitivity of passive microwave to vegetation used linear combinations of channels [e. g.
Choudhury and Tucker. 1987] but these simple indices are contaminated by variations
in atmospheric parameters and surface temperature. Microwave emissivities of land
surfaces were recently estimated from SSM/I observations by removing contributions
from the atmosphere, clouds, and rain using ancillary data from the International
Satellite Cloud Clifnatology Project (ISCCP) [Rossow and Schiffer, 1991; Rossow et
al., 1996] and the National Centers for Environmental Prediction (NCEP analyses)
[Kalnay et al., 1996]. The method is fully described in Prigent et al. [1997, 1998],
and summarized here. Cloud-free SSM/I obs:rvations are first isolated with the help
of collocated visible/infrared satellite observ:i tions (ISCCP data). The cloud-free
atmospheric contribution is then calculated from an estimate of the local atmospheric
temperature—humidify profile from NCEP reaaalysis. The atmospheric contribution
varies from place to place and amounts up to 15% and 50% in the Tropics for 19
GHz and 85 GHz respectively. Finally, with the surface skin temperature derived
from IR observations (ISCCP estimate), the surface emissivity is calculated for all the
SSM/I channels. The standard deviation of the day-to-day variations of the retrieved
emissivities within a month are typically 0.013 for all channels and for their polarization
difference which is a measure of the precision of these estimates. Monthly-mean values

are calculated with a spatial resolution of 0.25°.

2.3. Microwave backscattering at 5.25 GHz (ERS-1 scatterometer)

The European Space Agency (ESA) ERS wind scatterometer operates at 5.25
GHz vertical polarization with a 50 km spatial resolution. General characteristics
and performance of the ERS scatterometer can be found in Frison and Mougin
[1996 a]. The backscattering signal is continuously measured by three antennas, one
looking normal to the satellite flight path and the other two pointing 45° forward

and backward respectively. The instrument scans a 500 km wide swath with viewing
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angles ranging from 18° to 59°. The ERS scatterometer shares some hardware with
the synthetic aperture radar (SAR) and the SAR and the scatterometer modes are
mutually exclusive. Therefore, over some areas where the SAR is typically on (North
America, Europe), the temporal sampling rate for the scatterometer is lower. With
the scatterometer operating continuously, global coverage would be achieved in about
4 days. The scatterometer response is very stable over time for non-changing targets
and the measurement uncertainty is estimated to be about 5%. Wate. vapor and
cloud absorption/emission are negligible at 5.25 GHz and no atmospheric correction
is required for the scatterometer signal. Frison and Mougin [1996 a] show that the
antenna inter-calibration is very good, which enables the use of all three antennas.
They also demonstrate that azimuth angle effects are small over vegetated surfaces,
although strong anisotropic signatures are observed over some deserts. For incidence
angles between 25° and 50°, scatterometer responses can be approximated by a linear
function of the incidence angle. Frison and Mougin (1996 b] compared the scatterometer
responses at various incidence angles and showed that the radar signal at low incidence
angles (<20°) is related to soil characteristics whereas observations at large incidence
angles (~45°) provide more information about vegetation. In addition, radar signals at
low incidence angles exhibit a larger scatter and a smaller dynamic range within a year.
Other studies [e. g. Wagner et al., 1999 a] suggest fitting a model to the slope of the
angular dependence at 40° because this parameter is supposed to be less sensitive to
the soil moisture.- However, this parameter is very sensitive to noise and several years of
data are required to calculate it.

Following the method developed by Frison and Mougin [1996 a] for each cell on an
equal area grid of 0.25°x0.25° at the equator, a linear fit is calculated for all incidence

angles between 25° and 50° for a month and the fitted value at 45° is kept.
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2.4. Matthews’ vegetation classification

Matthews' vegetation and land-use data set was compiled from a large number
of published sources [Matthews, 1983]. At a 1° spatial resolution, the vegetation
classification distinguishes a large number of vegetation types, typically grouped to
30 classes of matural vegetation. Associated with the vegetation classification is a
land-use data set that distinguishes five levels of cultivation intensity, ranging from 0
to 100% cultivation. Combining the vegetation and land-use data set gives information
about actual land cover. Table 1 presents Matthews’ vegetation classification for the
30-vegetation classes along with a simplified 9-class group'ng on the basis of life form.
For each vegetatior class, areas with cultivation intensity of > 50% are defined as
cultivation which makes up a tenth class. The vegetation ¢ asses are indicated by Vn for

the 10-class and by vn for the 31-class classification.

3. Brief review of the different wavelength responses to
surface characteristics and presentation of monthly-mean
maps

3.1. Visible, near-infrared reflectances and the NDVI

Green vegetation exhibits a characteristic reflectance curve. Snow-free reflectance
is ~ (.05 in the VIS portion of the spectrum (<0.7 ym) with a steep rise in the NIR
(0.7-1.1 pm) to about 0.20. Seasonally, the rise of full-spectrum albedo from the
beginning to the ééak of the growing season is the net effect of two opposing trends
[Bauer and Dutton. 1962; Pinty and Szejwach, 1985]. The spring-summer increase is
governed by declining reflectance in the VIS and increasing reflectance in the NIR.
Full-spectrum albedo declines from the growing season maximum to some lower autumn
value through a reversal of the VIS and NIR trends. These seasonal variations result

in a NIR/VIS ratic that increases during the growing season and declines abruptly



at the end of the growing season. The growing-season minimum in the VIS is due
primarily to chlorophyll absorption at ~0.65 um [Knipling, 1970]. Individual leaves do
not absorb NIR radiation significantly and NIR reflectance of vegetation canopy is due
to complex interactions within the internal leaf structure and between the leaves, the
canopy structure. and the soil backéround [Scott et al., 1968; Knipling, 1970; Sinclair et
al., 1971; Gausmaﬁ, 1974]. Colwell [1974] insists on the important role of vegetation
structure, soil reflectance, and observation geometry (especially solar zenith angle)

in understanding and predicting vegetation canopy from NDVI. From ground-based
measurements. several authors have mentioned the difficulty of lifferentiating between
vegetation types from reflectances only [Scott et al., 1968; Sinc.air et al., 1971] and
they suggest exploring the temporal changes of the reflectances. Tucker [1979] showed
corre ation between the properties of the vegetation canopy and the reflectances (in
the VIS at 0.65 um and in the NIR), while Scott et al. [1968] only observed such a
correlation in the VIS,

Different combinations of the reflectances in the VIS at 0.65 um and the NIR have
been investigated [e. g. Tucker, 1979; Begue and Myneni, 1996]. They are all sensitive
to the presence of vegetation but are differently affected by changes in soil color and
brightness. NDV1 is the most widely used. It capitalizes on the magnitude of reflectance
differences between spectral bands and on its seasonal variations.

NDVT has been found to be correlated with the fraction of photosynthetically active
radiation (FPAR) absorbed by green végetation (since it is related to spectral albedo),
to leaf area index (LAI) [e. g. Asrar et al., 1984; Begue and Myneni, 1996], and to
carbon fixation [Fung et al., 1987], as well as providing information about vegetation

phenology [Moulin et al., 1997].
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3.2. Passive and active microwave responses over land

Microwave responses of the land surface include contributions from the vegetation
and from the underlying surface. An extensive body of research has been directed toward
a better understanding of the mechanisms responsible for the microwave emission and
backscattering of soil and vegetation, both from theoretical analysis and from small-scale
field experiments using hand-held, truck-mounted, or airborne sensors. A review of
wnese studies is presented by Ulaby et al. [1986] and more recent developments include
modeling by Raram et al. {1995], Wignero . et al. [1993], Ferrazzoli and Guerriero
[1996] or measurements by Matzler [1990], VVigneron et al. (1997}, Heu ison [2000].

Vegetation absorbs, emits and scatters microwave radiation. Radiative properties of
vegetation are mainly driven by the dielectric properties of the vegetat.on components,
their density, and the relative size of vegetation components with respect to the
wavelength. Dielectric properties of vegetation are closely related to their water content.
Increasing vegetation density usually reduces the emissivity polarization difference
[Choudhury, 1989] and increases the backscattered signal [Mougin and Frison, 1996
a]. Both theory and in situ measurements predict increasing absorption/emission and
scattering by vegetation with increasing frequency, and as a consequence the underlying
surface contribution is expected to increase with decreasing frequency.

Bare soil response depends on soil dielectric properties and roughness. At satellite
resolution. smooth bare soils have a quasi-specular reflection, producing high polarization
emissivity difference: around 50° incidence and low backscattering coefficient. When the
terrain gets rougher, surface scattering causes the emissivity polarization difference to
decrease and the backscattering coefficient to increase. In dry soil, volume scattering
can be involved producing low radar return [Deroin et al., 1997] and specific passive
microwave signatures [Prigent et al., 1999].

Water has a high dielectric constant compared to bare soil. For passive

measurements. open water surfaces (lakes, inundated areas) exhibit very low emussivities
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in both horizontal and vertical polarizations along with a high polarization difference.
Passive microwave measurements can be used to detect inundation [Gidding and
Choudhury, 1989; Sippel et al., 1998]. Active instruments measure low backscattering
coefficients over water surfaces. Mjcrowave emissivities and backscattering coefficients
are also sensitive to soil moisture. Recent investigations includes studies by Owe et al.
[1999] and Vinnikov et al. [1999] for passive microwaves and by Wagner et al. [1999
b] for the active measurements. However, soil roughness and presence of vegetation
are serious challenges for the detection of soil moisture variations. While several in
situ measureme ts of land surface emissivities and backscattering coefficients have been
conducted, they do not cover the large diversity of surface types on the globe and

extrapolation frcm small scale measurements to satellite field of view is not trivial.

3.3. Presentation of monthly-mean maps

Figure 1 presents monthly-mean values of NDVI (AVHRR), emissivity polarization
differences at 37 GHz (SSM/I), and scatterometer backscattering coeflicients at 5.25
GHz (ERS-1) for August 1992, along with the vegetation classification map for 10
classes. There are qualitative correspondences between the three types of observations
and the vegetation classification.

Desert areas (V9) are characterized by low NDVI, large emissivity differences and
low backscattering coefficients, and are clearly noticeable on each map. Variations of
the backscattering coefficients and the emissivities over desert areas are interpreted in
terms of rock/sand types and topography. Higher values of backscattering and lower
values of emissivity polarization differences are found over high topography in the desert
(Tibesti, Air in the Sahara).

Tropical rain forests display large backscattering coefficients and negligible
emissivity polarization differences. However, the tropical rain forest in Africa shows

rather Jow NDVT values compared to the rain forest in South America. Grassland and
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woodland can also be distinguished in Africa and in South America. The sharp gradient
southward of 15°N in Africa is observable on all the maps: it corresponds to the Sahelian
transition between arid shrub grassland and more humid grassland with tree cover.
Water surfaces (lakes, rivers, wetlands) show high emissivity polarization differences
at 37 GHz. The major river systems (e. g. Congo, Amazon) and wetlands (e. g
Pantanal in Scuth America) appear clearly on the microwave emissivity map while
they are no' easily detectable on the NDVI or on the backscattering coefficient maps.
With the ERS-1 scatterometer working at 5.25 GHz, one would expect less absorption
by vegetation at 5.25 GHz ERS-1 frequency than at SSM/I higher fiequencies an1 a

stronger contribution from the underlying surface. The opposite is observed.

4. Evaluation of the potential of the satellite data sets for
vegetation monitoring
4.1. Ability to distinguish major vegetation classes

Figure 2 represents the histograms of the different observations for 4 major
vegetation types in areas in the northern hemisphere where the cultivation intensity is
<20%. Evergreen and deciduous forests have been grouped together because during
summer months no significant differences are observed; the same is done for woodland.
The analysis is not restricted to the parameters that are commonly investigated for
vegetation studies (NDVI, emissivity polarization differences) but also includes an
examination of the individual channel résponses. For a given observation, the histograms
are normalized to have the same area, giving an estimate of the probability distribution
function.

For AVHRR, from separate channel information (VIS or NIR), only two classes
of vegetation appear to be distinguishable and even these have substantial overlap in

reflectance distributions. Absorption by chlorophyll decreases with the amount of active
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photosynthetic parts in the vegetation and as expected the visible reflectance is lower
for grassland than for woodland and forest. Lower reflectances could also be interpreted
in terms of larger fractional coverage by bare soils which have higher VIS reflectances.
There is more variability in the NIR than in the VIS. Both the VIS and the NIR signals
saturate for higher biomass density: It is not possible to distinguish between woodland,
forest and rain forest, based simply on a manth’s data. Combining those two pieces of
information in the NDVT helps differentiate woodland from forest, but rain forest and
other forests still appear very similar. Other authors also observed saturation of the
NDVI response for high greer -leaf density [e. g. Tucker, 1985]. There are two peaks in
the woodland histogram for tne NDVI (also seen on the VIS histogram) with the lower
value peak correspoﬁding to ecid East Africa.

For SSM/I, vegetation irformation is similar at all frequencies. Separating
vegetation via individual SSM/I channels (vertical or horizontal polarization) cannot
be done. The emissivity in horizontal polarization is lower for grassland than for
tree-covered areas. With decreasing vegetation density, the contribution of bare soil
surfaces within a pixel increases, reducing emissivity in the horizontal polarization. The
emissivity in vertical polarization shows little variation: Emissivities are slightly smaller
for rain forest than for other forested regions, which may be explained by the large
water volume in big leaves inducing significant scattering. However, given the absence of
in situ radiometric measurements over rain forest, this hypothesis cannot be confirmed.
Calculating the éfn’issivity polarization'difference helps separate rain forest from other
forest/woodland and from grassland. Nevertheless, discrimination between forest and
woodland is not possible.

With increasing vegetation biomass, the backscattering signal from ERS-1 increases
and the four histograms are rather well separated, except for grassland and with
overlapping between forest and woodland. Given the estimated error of 5%, a ~4 dB

range between the peaks of tree-covered classes represents a significant vegetation signal



that is promising for discrimination of vegetation density gradients. The grassland
backscatter histogram is wide as it is for all other observations (except for the emissivity
in vertical polarization). It even has two peaks in the NDVI: the peak with high NDVI
values corresponds well to grassland with partial tree cover, while the other peak is
related to locations with less woody‘ cover (see the 31-class vegetation classification in
Table 1). By the same token, forest and woodland classes may also contain partial
coverage by grassland, which might explain the difficulty of separating the grassland
and the woodland/forest classes.

Similar results are obtained in the southern hemisphere, but with more confusion

between forest and woodland.

4.2. Ability to detect the vegetation phenology

For the different observations in the northern hemisphere, Figure 3 shows the
histograms for 6 vegetation types for three months that correspond to different
vegetation stages. Areas where the cultivation intensity is larger than 20% are excluded
as are pixels that are snow-covered for at least one of the three months. The snow cover
information comes from the NOAA operational analysis. The mean difference between
August 1992 and February 1993 is indicated, along with its standard deviation.

Rain forests have a stable signature in time for both passive and active microwave
observations; this stability is clear for all months. NDVI responses over rain forest
are unstable, especially in the southern hermisphere (not shown). That has also been
observed by Tucker et al. [1985] over Africa and they explain their findings by the
specific ecology of the rain forest in Africa compared to the other rain forests elsewhere.
However, the variations in Figure 3 can more probably be attributed to contamination
by atmospheric features such as water vapor and clouds. Gutman [1999] argues that
over rain forest, the NDV] decreases with local zenith angle, driven by a decrease in the

NIR due to water vapor absorption. High frequency of cirrus contamination over the
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Tropics is also likely to induce spurious NDVI variability. Figure 4 presents scatterplots
of VIS and NIR reflectances, NDVI, and radar backscattering versus the high cloud
amount from ISCCP, for 6° x 6° area in the African rain forest (3S 3N; 17E 23E) and
for a year. NDVI and VIS reflectances show unexpectedly large variances over the year
that are linearly correlated to the amount of high clouds. No such correlation is found
with the NIR and the radar signal, ruling out a possible correlation between high cloud
amount and vegetation characteristics.

With microwave measurements (emissivity polarization differences and the radar
backscattering). the responses are more rtable throughout the year for evergreen
forests (V3) than for deciduous ones (V2). In tree-covered regions, the emissivity
polarization difference stays low even in vinter and backscattering coefficient remains
high. Interaction between the microwave signal and the vegetation is not limited to green
leaves in the canopy but includes scatterir g and emission/absorption by woody parts
comprising the structure of the canopy; these results suggest that the leaf contribution
is relatively small. NDVTI or individual VIS and NIR channels do not distinguish the
two forest types: The differences in the histograms between months are about the same
for the deciduous and the evergreen forest, and surprisingly, the deciduous forest has
the same signature in August and December.

Especially for grasslands, variations in the NDVTI are essentially due to variations
in the NIR and not in the VIS. Changes in the VIS channel are small over the year and
are of the order of the measurement noise. For the NIR, seasonal changes are larger,
but they have similar range for all vegetation types except rainforest. As discussed by
Gutman [1999], solar zenith angle variations can be partly responsible for the seasonal
cycle of the reflectances. Water vapor variations can also modulate the signals. Justice
et al. [1991] observed that water vapor absorption in the NIR channel may drive part
of the NDVTI seasonal variation, especially over grassland. Tanre et al. [1992] show

that for grassland over Mali. correcting the NDVI from water vapor contamination can
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increase it by 0.1 for wet days. C. Brest at NASA Goddard Institute for Space Studies
at GISS (personal communication) also performed a water vapor correction to AVHRR
data and observed a change of ~0.05 in reflectances over tropical areas. Water vapor
induced change in the NDVI is modulated by the water vapor amount, the geometry
of the observation and the surface reflectance itself: simple correction of the NDVI
values cannot be eésily implemented and a full treatment of the water vapor absorption
is a requirement for an adequate interpretation cf the reflectances in terms of surface
properties only.

Individual passive microwave channels are not able to capture the seasonal cycle
of any vegetation type and mean differences between maximum and minimum in the
vegetation cycle is Within the noise level (~ 0.013). However, both the emissivity
polarization difference and the backscattering coefficient show realistic variations within
the vear that can be attributed to vegetation seasonality, although the magnitude of the

microwave seasonal response is small, especially for the passive measurements.

4.3. Ability to distinguish between vegetation subclasses

The subdivisions of forests and woodlands (see Table 1) are essentially driven by
climate zone and as a consequence, differences in the signals are not expected from for
instance tropical and temperate evergreen needle-leave forests. That has been verified
but is not shown here.

Separability between broad-leaved and needle-leaved tree-covered areas is very
difficult to assesg Lecause the two leaf types exist in difterent climate regions. For
instance, evergreen broad-leaved woodland (v13) is concentrated in coastal regions in
Australia while evergreen needle-leaved woodland dominates in Canada above 50°N.
Attributing small signature differences exclusively to leaf type is misleading, given the
large climatological differences between the two regions.

The grassland subclasses (classes 23 to 29 in the 31-class classification) present



different biomass densities that should have different signatures in the observations.
Figure 5 shows time series of three grassland types v23 to v25 which represent grassland
with decreasing tree cover, in the two hemispheres (see Table 1). With decreasing woody
coverage, the biomass density is lower and one expects to observe: 1) increasing values
of the polarization emissivities for passive microwave, 2) reduced backscattering signal
for radar, and 3) lower NDVI values especially during summer months. In the southern
hemisphere, these patterns are apparent but in the northern hemisphere, differences
between v23 and v24 are opposite to what is expected with all instruments. In this
case. the vegstation classification may be questioned. Jifferences between classes 26 to
28 are related to grassland height from tall to short grissland, which should correspond
to decreasing vegetation density: The expected respon: es are observed with the various
measurements (not shown}), but with a lot of scatter. 7'he vegetation classification may
have to be revisited in the light of these satellite measurements, especially in South
America and Africa where land use practices may not Se well documented and where

anthropogenic modification of the vegetation on short time scales is occurring.

4.4. A case study: The desert/rain forest transition in Africa

Values of NDVI, ERS-1 backscattering and SSM/I emissivity polarization differences
(Figure 6) are compared for August and February along a cross-section at longitude 20E
that encompasses a strong north-south gradient of vegetation, from the desert in Chad
(latitude 20N) to the rain forest in the Democratic Republic of Congo (latitude ON). In
this region, the vegetation phenology is driven by rainfall, with an increase in the rainy
season duration and in the amount of precipitation from north to south. For specific
sites along the cross section, the annual cycle of the three observations are presented
along with the precipitation cycle as given by the Global Precipitation Climatology
Project from merged infrared and microwave satellite data and gauge measurements

(Huffman et al.. 1996]. The vegetation type is indicated as given by Matthews’ 31-type



classification. All the variables are normalized for an easier comparison (see the figure
caption).

North of 16N, the three observations are stable in time, with low NDVI values and
high emissivity polarization differences. The backscattering signatures change abruptly
between 17N and 18N: Around 17N, sand dunes induce a very low backscattering
signature because of volume scattering in sand, while north of 18N, the backscattering
signal increases with the presence of rocks [FAO-i/NESCO, 1977].

South of 16N, variations between summer and winter increase for all observations.
From (16N,20E) to (6N, 20E), the seasonal cycle of the various grassland types (from
classes 23 to 25) is well captured by the three types of observations, and the observations
are varying in phase. The vegetation growth is associated with the rainy season, with a
rapid vegetation de\"elopment as soon as the rainy season starts, and a slow decrease in
the senescence phase. Frison and Mougin [1998] analyzed the respective contributions
of the soil and vegetation in a case study in a semi-arid environment in Northern Sahel
(Mali). concluding that although the soil component is always large, the backscattering
coeflicient reflects the vegetation development well. As expected, passive and active
microwave responses are very stable in the rain forest (see the annual cycle at 1N, 20E).
However, for the same area, NDVI exhibits large variations during the year that cannot
be explained in terms of vegetation.

At specific locations along the cross-section, the SSM/I response shows large
increases in the emissivity polarization differences especially in August during the rainy
season. At 10N for instance, the decrez;se in the emissivity polarization differences is
related to the Slamat swamps in Chad. The decrease around 13N could be related
to swamps around the Batha river in Chad, but that should be further investigated.
Around 2N in the rain forest, the Congo river and its associated swamps induce
a decrease in the emissivity polarization. There are no significant changes in the

backscattering coefficient nor in the NDVL
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4.5. Correlation between the three types of observations

Figure 7 represents the scatterplot of all possible pairs of observations, for the
NDVI, the backscattering coefficient, and the emissivity polarization difference at 37
GHz, for four major vegetation types in South America in August. For each scatter
plot, the population contours at 0.2 and 0.5% are drawn.

For the rain forest, the ERS backscattering coefficients show little dispersion, while
the NDVI and the emissivity polarization difference exhibit larger scatter. For the
NDVI, atmospheric contaminations are suspected. Pixels that have large emissivity
polarization differences (>.01) are co 1centrated in coastal areas an ! around the major
river systems (Congo in Africa, the Amazon in South America). Ttis confirms the high
sensitivity of the palssive microwave measurements to water surfaces, compared to the
other measurements. Compared to the SSM/I responses, ERS-1 backscattering signal
shows more dynamic range in densely vegetated areas outside wet ar:as, with population
contours elongated along the backscattering coefficient axis. For emissivity polarization
differences between 0.00 and 0.02, ERS backscattering coefficient varies from ~-7 dB to
~-12 dB over forest and woodland with lower values of the backscattering coefficients
corresponding to the transition zones between forest/woodland and grasslands. ERS-1
radar signal has the ability to detect density gradients in forested areas. For grasslands,
the backscattering signal and the SSM/I response are almost linearly related, but this is
not true for NDVI. NDVI signal shows‘a large dynamic for low emissivity polarization
differences and fo-r. rather high radar signals, while the NDVI reaches saturation for high
emissivity polarization and for low radar signals. Similar behavior has been observed by
Becker and Choudhury [1988], Tucker [1989], among others. Over sparsely vegetated
areas, the large variability of the microwave signals are explained by their sensitivity to
bare soil roughness and moisture. Given that all vegetation types show a large NDV]I
variability. it is difficult to attribute the large dvnamic of the NDVI to vegetation

changes alone: It can also be related to atmospheric contamination of the signal.



5. Merged analysis of spectral variations with clustering
technique
5.1. Description of the clustering technique

In the preceding sections, we analyzed the response of individual spectral band to a
given type of vegetation. We also examined relations between pairs of spectral bands. A
clustering technique has been developed to merge all the data rets to obtain an analysis
of the variations of one spectral band with respect to the others. At this stage, the
clustering technicue is a tool to help interpret the variability of the channels; it is not
vet optimized for vegetation classification.

Let {X'€eR"; i=1,..., M} be an observation dataset, where n is the dimension
of the observation (i.e. the number of channels in the following) and M the number of
observations (i.e. the number of monthly-mean pixels in the following). The goal of
unsupervised classification algorithms is to classify this data set into subgroups that
optimally describe the statistical variability present in the data, without any a priori
information about actual physical classes. Clustering techniques define K prototypes (or
clusters) P' that give a discrete description of the continuous observations and optimally
quantify their variability. Each observation X' is associated with the prototype for
which the distance d( X", P¥) is the smallest.

Kohonen topological feature maps are also called self-organizing topological maps
[Rohonen, 1982]. The specificity of this algorithm compared to other clustering
techniques is obtained by imposing a néighborhood requirement on the prototypes.
When the algorithm has converged, prototypes corresponding to nearby points on
the feature map grid also have nearby locations in the data space. This additional
information on the extracted prototypes makes it easier to interpret each prototype. The
neighborhood system adopted in this study is a one dimensional ordering of prototypes

where the neighborhood of a prototype is its two nearest neighbor prototypes. This
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neighborhood system is well adapted to the definition of a statistical index that is a
particularly good way to describe the links and the variabilities in the dataset.

The Kohonen classification algorithm is applied to a year of monthly-mean
observations for SSM/I, ERS-1, and AVHRR (M=12). Each observation vector
corresponds to one snow-free pixel of 0.25° x 0.25° has 13 components (n=13) which
are 1) 9 SSM/I derived variables: the emissivities for each polarization and their
polarization difference at 19, 37 and 85 GHz, 2) the ERS-1 backscattering coefficient,
and 3) the AVHRR reflectances in the VIS and NIR and the NDVI. Each observation
in the observation vector is normalized by its mean spatial vaiiance over a yea.. The
same weight is given to each instrument, meaning that each individual observa:ion is
weighted by a coefﬁéient 1/9 for SSM/I and 1/3 for AVHRR. The number of prototypes
K is chosen to be 30. The distance d is the absolute value of the difference; coinpared

to the traditional Euclidien distance, it gives less weight to potential outliers.

5.2. Results of the clustering and joint analysis of the spectral bands

The hohonen algorithm is applied to estimate the K = 30 clusters, P*, that
optimally quantify the dataset. After the convergence of the algorithm, each observation
X' is associated with its closest prototype using the distance d. A cluster map is
produced for each individual month; Figure 8 shows the results for August 1992.
Figure 9 represents the n = 13 coordinate values (i.e. the channel observations)
of each prototype P* with respect to t'he cluster number, from cluster 1 to cluster
K = 30. The standard deviation of the subgroup of observations associated with each
prototype is added to the figure. For a given prototype, a low standard-deviation in
one channel means that the channel provides good discriminant information in the
clustering solution: the relation between the cluster and the channel is not ambiguous.
On the other hand. a high standard-deviation means that the prototype is relatively

insensitive to the particular channel. Such a high standard deviation could originate
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from instrumental noise or from additional variability that contaminates the channel
and 1s not related to the surface properties (atmosphere contamination for example).

The number of prototypes A has been chosen so that, for each consecutive
prototypes, at least one of the channel is sufficiently statistically discriminant: For this
channel, the difference between the.two prototypes is above the standard-deviation of
subgroups associated with each prototype. The ambiguity between prototypes is thus
limited. As a consequence, on the map, each class shows a good spatial «onsistency.
The variability of each cluster subgroup, which depends on the value and the number of
observations in the subgroup, has been uni‘ormly distributed by the Kohonen algorithm
in each prototype for an optimal quantifici tion of the dataset.

The 30 clusters have been separated into three contiguous groups (see Figure
8). The three groui)s can be associated with arid environments (clusters 1 to 10),
vegetated areas (clusters 11 to 24) and wet regions (clusters 25 to 30). Clusters 11
to 24 can be compared to a vegetation deusity gradient that shows similarities with
Matthews' vegetation classification. Although it is not our purpose here to classify
the vegetation, a quick comparison is performed between the clustering results and
Matthews' classification for the northern hemisphere in August. 58% of class V1 in
Matthews' classification correspond to cluster 24, and 17% are in cluster 25. Forest type
(V2+V3) has its maximum population in cluster 21, while woodland (V4+V5) has it for
cluster 19.

5.2.1. Arid environments. Clusters 1 to 3 correspond closely to sandy deserts
[FAO- UNESCO,- 1977] with high reﬁec’tances in the VIS and NIR, low backscattering
signals from ERS-1 and large polarization differences for SSM/I. Clusters 4 to 8 have
similar VIS and NIR reflectances, while the backscattering signal increases by ~9 dB
due to increasing surface roughness related to the combined effects of rocky surfaces
and topography. SSM/I polarization differences also decrease with surface roughness.

Clusters 9 and 10 correspond to desert areas in high topography and they show a large



backscattering signal compared to the surrounding areas. Radar signals have a high
sensitivity to surface roughness that could be used to characterize desert properties,
especially in the context of estimating dust sources [Marticorena et al., 1997).

5.2.2. Vegetated areas. T‘he cluster numbers between 11 and 24 could be
linearly transformed into a multivariate-source index related to vegetation density.
Clusters 11 to 13 are predominantly located in arid areas. From cluster 14 to 24,
NDVI, radar backscz tering, and the microwave polarization differences show a smooth
increase corresponding to increasing vegetation density. Changes in the backscattering
signal amount to 6 dB, which is very significant compared to the 5% accuracy of the
measurement. The backscattering standard deviation is very low for these clusters,
indicating that the radar signal is the most effective discriminant factor. Although
NDVT increases smoothly, its large standard deviation in these clusters shows that
separation between clusters is not related to its value. NIR does not vary much while
VIS reflectance changes from 0.15 to 0.05. In vegetated areas, emissivities in the
vertical polarization decrease with increasing frequency, which is contrary to what
models predict. This has already been observed and discussed [Prigent et al., 2000].
For the horizontal polarization, the emissivities are almost constant except for very
densely vegetated areas. These results reinforce the hypothesis of stronger scattering by
vegetation with scattering increasing with frequency. These signatures will be further
explored with the help of a radiative transfer model [Wigneron et al., 1993].

5.2.3. Wet areas. From cluster 25 to 30, the passive microwave signals vary
drastically with rather low standard deviation while the other variables show smaller
changes with large standard deviations. This confirms the high sensitivity of the
microwave signals to the presence of water and its potential for the detection of
inundated areas. Figure 10 shows the response of the three instruments in the rain forest
over the Amazon for a year. While the passive microwave clearlv detects the wetland

surrounding the river and its seasonal cycle. the active microwave instrument onlv
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responds to scattering by the vegetation. With increasing {requency, one expects higher
attenuation and scattering by vegetation and as a consequence a lower sensitivity to soil
properties. Although operating at a lower frequency, ERS-1 scatterometer observations
show much less sensitivity to the presence of inundated areas. This suggests that
scattering by the vegetation could'dominate the radiative transfer processes in the
canopy, exceeding the absorption/emission contribution within the vegetation. Unified
radiative transfer models are now capable of simulating both the emissivity and the
backscattering responses of vegetation and soil [Wigneron et al., 1793; Karam et al.,
1995] Using radiative transfer model at 1.5 GHz, Du et al. [2000; attempt to assess
which of the two sensing techniques (passive or active) is less affected by vegetation
cover when trying to estimate soil moisture. They conclude that the two sensor types
have s'milar sensitivity to vegetation. Joint analysis of the emissivity and backscattering
model responses, compared to ERS and SSM/I observations, will heip better understand

the vezetation and soil interaction with the microwave radiation.

6. Conclusion

This study presents a global evaluation and comparison of measurements in the
visible and near-infrared, as well as passive and active microwave for characterizing
vegetation cover and seasonality. It is the first step toward a characterization of the
land surface using multi-satellite observations covering a large spectral range. A year of
monthly-mean observations of AVHRR (NDVI, visible and near-infrared reflectances),
SSM/1 (emissivitie; between 19 and 85 GHz) and ERS-1 (wind scatterometer
backscattering coeflicients) was analyzed at a 0.25° x 0.25° spatial resolution which is
compatible with climatological studies. The capacity to discriminate various vegetation
types is assessed in the context of the Matthews' vegetation classification, with special
emphasis on the ability to detect the vegetation phenology. A clustering technique

derived from the A'ohonen topological maps is developed to merge observations from all



28

three instruments and to provide a synthesis of the respective sensitivities of the various
spectral bands to surface properties.

NDVI varies with vegetation density from ~ 0.1 to ~ 0.7 with an estimated error
of 0.1 and saturates for forested areas. NDVI has a marked seasonal cycle for most
vegetation types that is mostly driv‘en by changes in the near-infrared reflectances, not
by variations in the visible reflectances. Tinie series over evergreen vegetation show
spurious seasonal variations of up to 0.2 i» the NDVI. Significant cirrus contamination
is evidenced over the African tropical forest. Atmospheric contamination (clouds, water
vapor, aerosols, and ozone) and solar zenith angle dependences also alter the signal.

A full correction of the VIS and NIR reflectances for atmospheric contamination is a
requirement in order to interpret the signals in terms of vegetation only. This task has
been undertaken at NASA GISS. Understanding spatial and temporal variations in the
VIS and NIR reflectances is of primary importance for the interpretation and prediction
of the surface albedo, which is a key parameter in the Earth energy budget.

Passive and active microwave observations respond to the absorption/emission and
scattering by vegetation elements including woody parts; they are not directly sensitive
to the green-leaf activity.

Active microwave backscattering observations (ERS-1) are not affected by variations
in atmospheric conditions and do not require significant preprocessing. Measured with
an accuracy of 5%, backscattering signals exhibit a high potential to characterize bulk
vegetation density including green-leaf'and woody structures. with ~10 dB changes
from rain forest to arid grassland. In contrast to NDVI, they have a stable seasonal
response over evergreen vegetation and show a realistic annual cycle over deciduous
vegetation. In arid places, backscattering measurements are very sensitive to surface
roughness and show very strong signatures over sand dunes, making them a potential
too] for desert studies. Unaffected by atmospheric variability, scatterometers appear to

be very promising instruments for land surface characterization, for their high sensitivity



to vegetation. and for their potential for desert investigations.

An atlas of microwave emissivities between 19 and 85 GHz has been calculated
from SSM/I using ancillary data to remove atmospheric contributions. The resulting
emissivity polarization differences show some ability to characterize vegetation types
but with a smaller dynamic range than ERS-1 observations; values range from ~ 0.00
for tropical forests to ~0.08 for arid grasslands, with an estimated error of ~0.013.
Vegetation discrimination is not possible from individual polarizations and sensitivity
to vegetation does not vary significantly with frequency. However, passive microwave
measurements exhibit a strong sensitivity to standing water, making it possible to
detect wetlands even in densely vegetated areas. A method to detect the inundated
areas and their extent is under development, using both passive and active microwave
instruments, with - he active observations helping in the estimation of the attenuation
by the vegetation. Although operating at a lower frequency, ERS-1 scatterometer
observations show much less sensitivity to inundated areas. This suggests that scattering
by the vegetation may dominate the radiative transfer processes in the canopy, exceeding
the absorption/emission contribution within the vegetation. Unified radiative transfer
models are now capable of simuli ting both the emissivity and the backscattering
responses of vegetation and soil [Wigneron et al., 1993; Karam et al., 1995). Joint
analysis of the emissivity and backscattering model responses, compared to ERS and
SSM/1 observations, will help better understand the vegetation interaction with the
microwave radiation.

Matthews vegetation classification has been used as a reference in this analysis
and it appears that this classification should be revisited in the light of this study,
especially in transition zones and in semi-arid environments. DeFries et al. [1995]
reviewed the dominant biophysical processes and concluded that among the most
important vegetation characteristics controlling biospheric fluxes are growth form (tree,

shrub. herb) and seasonality of woody vegetation (deciduous. evergreen). Our study
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suggests that a combined analysis of observations from the three instruments may
have the ability to characterize large-scale features of these two vegetation properties.
Unsupervised clustering techniques using Aohonen topological maps helped the joint
interpretation of the various spectral bands but also showed potential for land cover
classification. From this sensitivity analysis, an optimal set of variables can be selected
that are relevant for land cover characterization and a land cover classification can be
performed. Further improvements of the clusiering technique will include the use of
observation time series for a year instead of monthly data in order to take into account
the seasonal cycle of each vegetation type and the use of a priori information (altitude,
latitude). Combining observations from the three instruments will make it possible to
benefit from their cbmplementary strengths to extract maximum information about
vegetation biophysical characteristics on a global basis. It will also minimize problems
related to one instrument only and should show a better potential to monitor change

over time from series of benchmark behaviors derived from the suite of instruments.
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Figure 1. August 1992 monthly-mean satellite products presented on an equal area grid of
0.23° x 0.25° at the equator: a) NDVI (AVHRR) from the Pathfinder, b) emissivity polarization
differences (vertical-horizontal) at 37 GHz from SSM/I, ¢) ERS-1 scatterometer backscattering
coefficient in dB; d) Simplified version of the Matthews [1993] vegetation classification (10
classes) at a spatial resolution of 1° x 1°.

Figure 2. Histograms of the different observations for 4 major vegetation types, for the
northern hemisphere. For a given observation, histograms are normalized to have the same
area. Evergreen and deciduous forests have been grouped, as well as evergreen and deciduous
woodlands. Are only considered pixels with less than 20% cultivation intensity. The number of
pixels is indicated.

Figure 3. For the northern hemisphere and for the different obse-vations, histograms of 6
vegetation types, for three months that correspond to different vegeti tion stages. Areas where
the cultivation intensity is larger than 20% are excluded as well as pix2ls that are snow covered
for at least one month. The number of pixels is indicated. Numbers incicate the mean difference
between August 1992 and February 1993, along with the standard deviations in parenthesis.
Figure 4. Scatterplots of NDVI, VIS and NIR reflectances, and radar backscattering versus
the high cloud amount derived from ISCCP, for 6° x 6° in the African rain forest (35 3N; 17E
23E) for a year. The correlation coefficient is indicated.

Figure 5. For three grassland types with different woody cover, time series over a year (July
1992- June 1993) of the mean response of three selected observations (AVHRR NDVI, ERS-
1 scatterometer backscattering coefficient in dB, SSM/I emissivity polarization difference at
37 GHz). The standard deviation is also plotted. Pixels that are snow covered for at least

one month during the year are excluded. Results are presented for the northern and southern

hemispheres and the number of pixels is indicated.
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Figure 6. Comparisons of AVHRR NDVI, ERS-1 backscattering coefficient, and SSM/I emis-
sivity polarization difference at 37 GHz along a cross section at 20E from 20N to the equator,
for August 1992 and February 1993. The vegetation class in Matthews' classification is indicated
for each degree. For 5 specific sitfzs along the cross section, the full seasonal cycle is given with
the precipi.tatiqn rate in mm/day extracted from the GPCP data set. For comparison purposes,
all the values are normalized between 0 and 1 that corresponds to variations from 0 to 1 for the
NDVI, from -26 dB to -6 dB for the ERS-1 backscattering coefficient, from 0.15 to 0.0 for the
SSM/I emissivity polarization difference, and from Omm/day to 12mm/day for the rain rate.
Figure 7. Scatterplots of all possible pairs of observations for the AVHRR NDVI, th« ERS-1
backscattering coefficient and the SSM/I emissivity polarization difference at 37 GHz for four
major vege:ation types. Results are presented for the southern hemisphere, during summer
(February 1993). For each scatter plot, the population contours at 0.5% and 0.2% are drawn.
Figure 8. ‘or August 1992, cluster map derived from the Kohonen scheme.

Figure 9. For each observation, value of the prototype in each cluster (solid line), along
with the stundard deviation around this prototype in the cluster (dashed line). For passive
microwaves, standard deviations are indicated for 19 GHz only. The standard deviations for

the other channels are similar.

Figure 10. Response of each instrument over wetlands in the Amazon rain forest, for every
other month between July 1992 and June 1993. The precipitation is also indicated as given by

GPCP.



Table 1. Vegetation Types

Vegetation types

31 10 Pixels Pixels Description
classes classes N hem. S hem.
1 1 5942 10149 tropical evergreen rain forest, mangrove
2 3 3654 621 tropical/subtropical evergreen seasonal broadleaved forest
3 1 0 231 subtropical evergreen rainforest
4 3 0 479 temperate/subpolar evergreen rainforest
5 3 780 134 temperate evergreen seasonal broadleaved forest, summer rain
6 5 322 236 evergreen broadleaved sclerophyllous forest, winter rain
7 3 618 ] tropical/subtropical evergreen needleleaved forest
B 3 11921 0 temperate/subpolar evergreen needleleaved forest
9 2 1823 1647 tropical /subtropical drought-deciduous forest
10 2 5559 95 cold-deciduous forest, with e''ergreens
11 2 4598 0 cold-deciduous forest, withovt evergreens
12 8 718 2624 xeromorphic forest/woodland
13 5 695 1408 evergreen broadleaved scleroj hyllous woodland
14 5 3227 0 evergreen needleleaved woodland
15 4 1767 3438 tropical/subtropical drought-deciduous woodlan::
16 4 3240 0 cold-deciduous woodland
17 8 . 1357 272 evergreen broadleaved shrubland/thicket and dw arf shrubland
18 8 817 41 evergreen needleleaved or microphyllous shrubla: d/thicket
19 8 844 214 drought-deciduous shrubland/thicket and dwarf _hrubland/thicket
20 8 601 0 cold-deciduous subalpine/sub-olar shrubland and dwarf shrubland
21 8 6258 5279 xeromorphic shrubland/dwarf shrubland
22 7 9482 8 arctic/alpine tundra/mossy bog
23 6 3781 4587 tall/medium/short grassland with 10-40% tree ccver
24 6 3168 1808 tall/medium/short grassland with <10% tree or .uft-plant cover
25 6 8839 3374 tall/medium /short grassland with shrub cover
26 6 598 438 tall grassland, no woody cover
27 6 560 436 medium grassland, no woody cover
28 6 4872 2724 meadow/short grassland, no woody cover
29 6 359 0 forb formation
30 9 18187 1934 desert (bare soil)
31 10 24965 2896 cultivation

The 31 vegetation classes are defined by Matthews [1983). The number of equal area pixels of 0.25° x 0.25° at the equator
is indicated for each vegetation type and for each hemisphere. Each pixel surface is 773 km?. The 10-class vegetation
classification is also defined, in relation to the Matthews’ original classification.
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